ADVANCED DIGITAL & ANALOG
LAB TRAINER(16-BIT)
a. This is a robust, user -friendly and self contained modular based training system that
teaches the basic, fundamental theory of digital/ analogue electronics, concept,
construction of digital & analogue electronics circuits and its application.
b. The main base unit is equipped with various I/O devices on the main system board
to facilitate construction of circuit with ease.
c. The system also comes with a comprehensive set of modular experiment board
modules that covers most digital and analogue circuit theory practices and
application.
d. Each Experiment modules comprises of clearly labeled component mimic diagrams
and dedicated blocks to clearly show users the circuit connection and function of
dedicated blocks.
e. Built-in wiring points and test points to ease circuit connection and signal
measurements.
f. Comprehensive user/operational guide and lab workbook with reference answers
are provided.
DESCRIPTIONS :
TECHNICAL SPECIFICATIONS:
1. Solderless Breadboard Interconnected nickel plated contact with 1680 tie-points
(removable type)
2. DC Power Supply:
(i) Variable 0 ~ ±20VDC/500mA
(ii) Fixed ±5VDC/1A; ±12VDC/0.5A
3. AC Power Supply: 12V-0-12V/500mA 9V-0-9V/500mA (optional)
4. Sixteen (16)-Bits Logic Buffered Output LEDs
5. Sixteen (16)-Bits Data Input Switches
6. Two (2) Pulse Switches
7. Waveform/Function Generators(2 sets):
(i) Frequency Range:
1Hz ~ 10Hz
(5 ranges)
10Hz ~ 100Hz
100Hz ~ 1KHz
1KHz ~ 10KHz
10KHz ~ 100KHz
(ii) Output Waveform (with amplitude control):
- Sine wave (approx. 18Vpp max.)
- Square wave (approx. 18Vpp max.)
- Triangle wave (approx. 16Vpp max.)
- TTL output mode (TTL 5V output level)
8. Potentiometer:
(i) 1 K Ohm – 1x
(ii) 10K Ohm – 1x
(iii) 100K Ohm – 1x
(iv) 1M Ohm – 1x
9. Two function switches providing +5V/0/-5V levels
10. RC Configurable Timer Circuit Module
11. Intelligent Logic Probe to detect High, Low & Floating Logic Levels
12. Two (2) Digits 7-Segment LED Display with BCD driver & Binary-Hex driver
13. Built-in Digital Multimeter:
(i) Display: 3.5 digit LCD
(ii) DC Voltage: 200 mV / 2000 mV / 20 V / 200 V / 1000V
(iii) DC Current: 2000μA / 20mA /200mA /10A
(iv) AC Voltage: 200V / 750V
(v) Resistance: 200Ω / 2KΩ / 20KΩ / 200KΩ / 2000KΩ
14. Analogue Multimeter for measuring DC voltage/current, AC voltage and resistance
15. Built-in continuity tracer
16. Built-in Speaker (8 Ohm, 0.25W)
17. 4mm Banana Sockets – 2 x
18. BNC connectors – 2x
19. Switches: Slide switch 2 position(2x), toggle switch 2 position(2x)
20. Audio stereo input socket interface for L/R/Gnd (x1)
21. Input Supply: 240VAC/50Hz; with overload/short circuit fuse protection (Mains
On/Off switch with indicator)
22. Dimension: 540mm x 230mm x 125mm(WxDxH)
BASIC LOGIC GATE - MOD-1
- Overview & introduction to logic & digital switches
- Basic logic gates experiments & characteristic: OR, AND, Inverter, NOR, NAND
- Boolean Algebra & Simplification of Logic Equation
- DeMorgan’s Theorem & Karnaugh Map Simplification
- Introduction to TTL, CMOS, DTL, DL & RTL logic circuit
- Universal function for NAND and NOR gates
- Basic combinational circuit using AND, NAND, OR, NOR and NOT logic
- Circuits components:
• Hex Inverter (NOT Gates): 4 sets
• 2 input OR Gate: 2 sets
• 2 input AND Gate: 2 sets
• 2 input NAND Gate: 4 sets
• 2 input NOR Gate: 4 sets
• 3 input OR Gate: 2 sets
• 3 input AND Gate: 2 sets
• 3 input NAND Gate: 2 sets
• 3 input NOR Gate: 2 sets
• 4 input OR Gate: 1 set
• 4 input AND Gate: 1 set
• 4 input NAND Gate: 1 set
• 4 input NOR Gate: 1 set
- Introduction to Exclusive OR(XOR) and XNOR gates
- XOR logic using NAND gates, NOT-AND-OR gates, NOT-NOR gates XNOR
logic using NOT-NAND gates
- Dual input XOR circuit ( 4 sets)
- Dual input XNOR circuit ( 2 sets )
- Tri-state Inverter using 74xx40
- Tri-state buffer using 74Lxx41
- 4 to 16 Line Decoder Using 74xx154
- 8 to 3 Priority Line Encoder Using 74xx148
EXCLUSIVE OR(XOR) & LINE ENCODER/DECODER - MOD-2
- Constructing NOR circuits using basic gates
- Constructing NAND circuits using basic gates
- Constructing XOR circuits using basic gates
- Comparator circuit using XOR(2x) and NOT(2x) gates
- Parity Generator/Checker using MSI 74xx280
- Gray Code To Binary Conversion using XOR(3x) gates
- Binary to Gray Code Conversion using XOR(3x) gates
- Half Adder circuit using XOR(1x) & AND(1x) gates; Full Adder circuits using
XOR(1x), AND(2x) & OR(1x) gates
- Half Subtractor circuit XOR(1x), NOT(1x), AND(1x) gates; Full Subtractor circuit
using XOR(2x), AND(2x),
NOT(1x) & OR(1x) gates
- Four bit parallel adder using IC chip
- On board faults switches
COMBINATIONAL LOGIC 1 - DEM 2/DEM-3
- Basic 1 of 4 Decoder using NOT(2x) and AND(3x) gates
- BCD-Decimal Decoder using 74xx42
- 7-Segment Decoder/Drivers using 74xx47
- Decimal to BCD Encoder using 74xx147
- Multiplexer using 74xx151
- Demultiplexer/ 3 to 8 decider using 74xx138
- Basic encoder using NAND(2x) & pull up resistors
- On board fault switches
COMBINATIONAL LOGIC 2 - DEM-4
- Introduction to RS, Data, T and JK Flip Flops
- Clocked RS Flip Flops Using NAND gates
- Clocked D Flip Flop With Clear & Preset
- Clocked JK Flip Flop With Clear & Preset
- Constructing T Flip Flop from JK Flip Flop
- Constructing D Flip Flop from JK Flip Flop
- Synchronous Binary counters (count up/down)
- Asynchronous Mode-N counters
- Asynchronous Binary counter - BCD counter
- Shift registers using D Flip Flops D Flip Flop circuits with clock in, clear &
preset ( 4 sets )
- JK Flip Flop circuits with clock in, clear & preset ( 4 sets )
- RS Flip Flop circuits (3 sets)
- Clocked RS Flip Flop circuit (1 set)
FLIP-FLOP - MOD-3
- Diode operation and characteristics
- Diode Clamper circuit
- Diode Clipping circuit
- Zener diode fundamental and characteristics
- Zener diode operation and biasing
- Zener diode voltage regulator circuit
- Zener diode limiting circuits
- The LED characteristics and operation
- Photodiode characteristics and operation
- Fault switches on board
DIODES - DIODES
- Transistor’s theory & fundamentals
- Transistor switching circuit
- Transistors AC/DC equivalent circuits
- BJT (NPN/PNP) characteristic
- BJT base biasing circuit
- BJT emitter biasing circuit
- BJT voltage divider biasing circuit
- BJT common emitter amplifier circuit
- BJT common collector amplifier circuit
- BJT common base amplifier circuit
BIPOLAR JUNCTION TRANSISTOR - BJT
- MOSFET theory & characteristics
- MOSFET drain feedback biasing cIrcuit
- MOSFET voltage divider biasing circuit
- MOSFET common drain amplifier circuit
- MOSFET common source amplifier circuit
- MOSFET common gate amplifier circuit
MOSFET - MOSFET
- JFETs theory & characteristics
- JFET self biasing circuit
- JFET voltage divider biasing circuit
- JFET common drain amplifier circuit
- JFET common source amplifier circuit
- JFET common gate amplifier circuit
JFET - JFET
- Op-Amp Bistable multivibrator
- Op-Amp Monostable multivibrator
- The Square Wave Relaxation Oscillator
- Variable Duty Cycle
- The Phase Shift Oscillator
- The Wien Bridge Oscillator
- The Triangular Waveform Oscillator
- Faults switches simulation
OSCILLATOR & WAVEFORM GENERATOR
- OP-AMP-OSC-01
- Introduction to Operational Amplifier (Op-Amp)
- Op-Amp theory and characteristics
- Op-Amp Inverting Amplifier
- Op- Amp Non-inverting Amplifier
- Op-Amp as Voltage Follower
- Op -Amp as Summing Amplifier
- Op-Amp as Subtractor
- Op-Amp as Integrator
- Op -Amp as Differentiator
- Measurements of op-amp parameters: open loop voltage
gain, input offset voltage, input offset current
- Op-Amp Input Modes (Differential, Single-Ended, Common Mode)
- Inverting and Non-inverting Inputs
- Inverting and Non-inverting Amplifiers
- Faults switches simulation
OPERATIONAL AMPLIFIER 1 - OP-AMP-01
- Op-Amp as Comparator
- Op-Amp as Voltage DIvider
- Inverting Schmitt Trigger
- Non-Inverting Schmitt Trigger
- Op-Amp as Positive Clipper
- Op-Amp as Negative Clipper
- Op-Amp as Positive Clamper
- Op-Amp as Negative Clamper
- Cascaded Amplifier using Op-Amps
- Using Op-Amp as Instrumentation Amplifier
- Faults switches simulation
OPERATIONAL AMPLIFIER 2 - OP-AMP-02
- Op-Amp Low pass filter(LPF)
- Op-Amp High pass filter (HPF)
- Op-Amp Band pass filter(BPF)
- Op-Amp BRF(bad reject filter)
- Phase Lock Loop (PLL) Operation
- Bistable multivibrator (555 timer)
- Monostable multivibrator (555
Tmer)
- Astable multivibrator (555 timer)
- Faults switches simulation
FILTERS & TIMERS - OP-AMP-03
- The Crystal Controlled Oscillator
- The Hartley Oscillator
- The Colpitts Oscillator
- The Twin “T” Oscillator
- The Clap Oscillator
- Faults switches simulation
OSCILLATOR 2
1. User/Operational Manual x1
2. Mains Power Cord x1
3. Spare fuse x2
PRODUCT ACCESSORIES
- Introduction to Operational Amplifier (Op-Amp)
- Op-Amp theory and characteristics
- Op-Amp Inverting Amplifier
- Op- Amp Non-inverting Amplifier
- Op-Amp as Voltage Follower
- Op -Amp as Summing Amplifier
- Op-Amp as Subtractor
- Op-Amp as Integrator
- Op -Amp as Differentiator
- Measurements of op-amp parameters: open loop voltage
gain, input offset voltage, input offset current
- Op-Amp Input Modes (Differential, Single-Ended, Common Mode)
- Inverting and Non-inverting Inputs
- Inverting and Non-inverting Amplifiers
- Faults switches simulation
OPERATIONAL AMPLIFIER 1 - OP-AMP-01
- Op-Amp as Comparator
- Op-Amp as Voltage DIvider
- Inverting Schmitt Trigger
- Non-Inverting Schmitt Trigger
- Op-Amp as Positive Clipper
- Op-Amp as Negative Clipper
- Op-Amp as Positive Clamper
- Op-Amp as Negative Clamper
- Cascaded Amplifier using Op-Amps
- Using Op-Amp as Instrumentation Amplifier
- Faults switches simulation
OPERATIONAL AMPLIFIER 2 - OP-AMP-02
- Op-Amp Low pass filter(LPF)
- Op-Amp High pass filter (HPF)
- Op-Amp Band pass filter(BPF)
- Op-Amp BRF(bad reject filter)
- Phase Lock Loop (PLL) Operation
- Bistable multivibrator (555 timer)
- Monostable multivibrator (555
Tmer)
- Astable multivibrator (555 timer)
- Faults switches simulation
FILTERS & TIMERS - OP-AMP-03
- The Crystal Controlled Oscillator
- The Hartley Oscillator
- The Colpitts Oscillator
- The Twin “T” Oscillator
- The Clap Oscillator
- Faults switches simulation
OSCILLATOR 2
MODEL: DATS-TK01A